In differential geometry, an affine manifold is a manifold equipped with a flat, torsion-free connection.
Equivalently, it is a manifold that is (if connected) covered by an open subset of , with monodromy acting by affine transformations. This equivalence is an easy corollary of Cartan-Ambrose-Hicks theorem.
Equivalently, it is a manifold equipped with an atlas—called the affine structure—with all transition functions between charts affine (that is, have constant jacobian matrix); two atlases are equivalent if the manifold admits an atlas subjugated to both, with transitions from both atlases to a smaller atlas being affine. A manifold having a distinguished affine structure is called an affine manifold and the charts which are affinely related to those of the affine structure are called affine charts. In each affine coordinate domain the coordinate vector fields form a parallelization of that domain, so there is an associated connection on each domain. These locally defined connections are the same on overlapping parts, so there is a unique connection associated with an affine structure.
Contents |
An affine manifold is a real manifold with charts such that for all where denotes the Lie group of affine transformations.
An affine manifold is called complete if its universal covering is isomorphic to .
A fundamental group of a compact complete flat affine manifold is called an affine crystallographic group. Classification of affine crystallographic groups is a difficult problem, far from being solved. The Riemannian crystallographic groups (also known as Bieberbach groups) were classified by L. Bieberbach, answering a question posed by Hilbert. In his work on Hilbert's 18-th problem, Bieberbach proved that any Riemannian crystallographic group contains an abelian subgroup of finite index.
Geometry of affine manifolds is essentially a network of longstanding conjectures; most of them proven in low dimension and some other special cases.
The most important of them are